
Directed Acyclic Subsequence Graph

1

Zden�ek Tron���cek and Bo�rivoj Melichar

Department of Computer Science and Engineering

Czech Technical University

Karlovo n�am�est�� 13, 121 35 Prague 2, Czech Republic

phone: ++420 2 2435 7287, fax: ++420 2 298098

e-mail: ftronicek,melicharg@fel.cvut.cz

Abstract. Directed Acyclic Subsequence Graph is an automaton, which ac-

cepts all subsequences of the given string. We introduce a left-to-right algorithm

for incremental construction of DASG. The algorithm requires O(z) extra space

and O(nz log z) time for arbitrary alphabet (O(nz) for �xed alphabet), where

z = min(j�j; n). The number of transitions can be reduced by encoding input

symbols using k digits, where k < min(j�j; n). We introduce a left-to-right

algorithm for incremental construction of DASG for k = 2. We show the ex-

tension of the algorithm for the set of strings and its application for the longest

common subsequence problem.

Key words: Directed Acyclic Subsequence Graph, �nite automaton, searching

subsequences

1 Introduction

A subsequence of a string is any string obtained by deleteing zero or more symbols

from the given string. Directed Acyclic Subsequenc Graph (DASG) is an automaton,

which accepts all subsequences of the given text. It was introduced in [2] (preliminary

version was published in [1]). DASG is analogous to Directed Acyclic Word Graph

(DAWG) [3] using subsequences instead of substrings.

Let us suppose an alphabet � and a text T = t

1

t

2

: : : t

n

over this alphabet. DASG

for the text T is an automaton A = (Q;�; �; q

0

; F), where Q is a �nite set of states,

� is an input alphabet, � is a transition function, q

0

is the initial state and F is a set

of �nal states. States are denoted by numbers in this article.

In [2], there is described a right-to-left algorithm for construction of DASG and

encoding for reducing the number of transitions. In section 3 we introduce an incre-

mental left-to-right algorithm for construction of DASG, and in section 4 its modi�-

cation for encoded DASG. In section 5 we show the extension of the algorithm for a

set of strings and its application for the longest common subsequence problem.

1

This research has been supported by GA

�

CR grant No. 201/98/1155

107

Proceedings of the Prague Stringology Club Workshop '98

2 Motivation

Let Sub(T) denotes the set of all subsequences of the text T = t

1

t

2

: : : t

n

. The set

Sub(T) can be described recursively by the regular expression (" is empty subse-

quence):

Sub

0

= "

Sub

i

= Sub

i�1

("+ t

i

)

Sub(T) = Sub

n

For the set Sub

n

then holds:

Sub

n

= Sub

n�1

("+ t

n

) = Sub

n�2

("+ t

n�1

)("+ t

n

) = ("+ t

1

)("+ t

2

) : : : ("+ t

n

)

This expression gives us the direction for construction of the nondeterministic version

of DASG. The example of such nondeterministic �nite automaton (NFA) is in Fig. 1.

It also holds:

Sub

n

= Sub

n�1

+ Sub

n�1

t

n

= "+ Sub

0

t

1

+ Sub

1

t

2

+ : : :+ Sub

n�2

t

n�1

+ Sub

n�1

t

n

The last expression can be used for construction of the nondeterministic DASG with-

out "-transitions (the example is in Fig. 2). If all the symbols of T are di�erent, we

obtain directly the deterministic �nite automaton (DFA). The example of determin-

istic DASG is in Fig. 3.

0

a

"

1

b

"

2

b

"

3

c

"

4

Figure 1: NFA accepting all subsequences of T = abbc (with "-transitions).

0

a

b

b

c

1

b

b

c

2

b

c

3

c

4

Figure 2: NFA accepting all subsequences of T = abbc (without "-transitions).

3 Construction of DASG

Let us suppose an alphabet � and a text T = t

1

t

2

: : : t

n

over this alphabet. For

each symbol a of the alphabet � we will maintain the value f

a

, which is the smallest

number of the state not having an output transition labeled with a. We start with

an automaton with the only state 0. Each state of the automaton is �nal.

Lemma 1: The automaton constructed by Algorithm 1 has (n+ 1) states.

108

Directed Acyclic Subsequence Graph

0

a

b

c

1

b

c

2

b

c

3

c

4

Figure 3: DASG for the string T = abbc.

1: for each a 2 � do

2: f

a

 0

3: end for

4: for k 1 to n do

5: add state k

6: for s f

t

k

to (k � 1) do

7: add a transition labeled t

k

from the state s to the state k

8: end for

9: f

t

k

 k

10: end for

Figure 4: Algorithm 1 (incremental construction of DASG)

Proof: We start with the automaton with one state. The main cycle of the

algorithm is performed n times. During each step of the cycle we add just one new

state.

Lemma 2: The automaton constructed by Algorithm 1 accepts just all subse-

quences of T .

Proof: We prove the lemma in two steps.

1. If S is a subsequence of the string T then S is accepted by the automaton (induction

by the length of S):

Step 1: jSj = 1; S = s

1

. If s

1

occurs in T then state 0 of the automaton has transition

labeled with s

1

and the automaton accepts S.

Step 2: A string S

k

= s

1

s

2

: : : s

k

is a subsequence of T and is accepted by the

automaton. Let us create a new string S

k+1

= s

1

s

2

: : : s

k

s

k+1

by adding a symbol

s

k+1

to the end of S

k

. There exists a sequence i

1

; i

2

; : : : ; i

k

such that s

1

= t

i

1

; s

2

=

t

i

2

; : : : ; s

k

= t

i

k

(the automaton will �nish in state i

k

after accepting S

k

). If there

exists i

k+1

such that i

k

< i

k+1

� n and s

k+1

= t

i

k+1

, then state i

k

has transition

labeled with s

k+1

and the automaton accepts S

k+1

.

2. If S is accepted by the automaton then S is a subsequence of T (induction by the

length of S):

Step 1: jSj = 1; S = s

1

. If S is accepted by the automaton then state 0 has the

transition labeled with s

1

. State 0 has transition labeled with s

1

only if there exists

j; 1 � j � n such that s

1

= t

j

.

Step 2: A string S

k

= s

1

s

2

: : : s

k

is accepted by the automaton and there exists a

sequence i

1

; i

2

; : : : ; i

k

such that s

1

= t

i

1

; s

2

= t

i

2

; : : : ; s

k

= t

i

k

. We create a new string

S

k+1

= s

1

s

2

: : : s

k

s

k+1

by adding a symbol s

k+1

to the end of S

k

. The automaton will

�nish in state i

k

after accepting S

k

. If state i

k

has transition labeled s

k+1

then there

exists i

k+1

; i

k

< i

k+1

� n such that s

k+1

= t

i

k+1

. 4

109

Proceedings of the Prague Stringology Club Workshop '98

3.1 Number of transitions

De�nition 1: Let � be an alphabet and T = t

1

t

2

: : : t

n

a string over this alphabet.

Let �

e

denotes the set of all symbols, which are contained in T . We de�ne the e�ective

size of � as z = j�

e

j.

The minimum number of transitions is n (if and only if all the symbols of T are

the same).

For each state k, the maximum number of its output transitions is:

max out deg

k

= min(z; n� k)

It results from that the �rst (n+1� z) states may have at most z output transitions

and for the last z states the maximum number of output transitions decreases to 0.

Then, the maximum total number of transitions is:

(n+ 1 � z)z + (z � 1) + : : :+ 2 + 1 + 0 = (n+ 1� z)z +

z(z � 1)

2

=

2zn + z � z

2

2

DASG has this number of transitions if and only if the last z symbols of T are di�erent.

3.2 Complexity

The main cycle of the Algorithm 1 (lines 4{10) is performed n times. The lines 5 and

9 take constant time. At lines 6{8 are added all the transitions. Therefore, the total

time complexity of lines 6{8 is O(nz).

For �xed alphabet we suppose that adding or looking up the transition takes

constant time. Then, the algorithm requires time O(n + nz) in the worst case. The

time of subsequence test is O(m) in the worst case.

For arbitrary alphabet we suppose that adding or looking up the transition takes

time O(log z). Then, all the complexities must be multiplied by factor log z. In this

case, we use a balanced tree for values f

a

; a 2 �.

In both cases the algorithm requires O(z) extra space.

4 Encoding of input symbols

Encoding as a method for reducing the number of transitions was introduced in [2].

The method use k < z digits for encoding the input symbols, where z is the e�ective

size of the alphabet. The number of states grows at most to ndlog

k

ze + 1, but the

number of transitions usually decreases (see [2] for details). Fig. 5 shows the encoded

version of DASG for the text T = abbc (in this case encoding does not reduce the

number of transitions). The symbols are coded this way: a = 00, b = 01, c = 10.

0

0

1

5

1

6

1

7

0

81

0

1

2

0

1

3

1

4

0

1

Figure 5: Encoded DASG for the string T = abbc.

110

Directed Acyclic Subsequence Graph

Let us suppose an alphabet � and a text T = t

1

t

2

: : : t

n

over this alphabet.

Each symbol a of � we encode using digits 0 and 1. For that we need at least

c = dlog

2

ze digits. The algorithm is incremental. When we add a new symbol en-

coded as e

1

e

2

: : : e

c

, we need to ensure, that all previous �nal states have an output

path labeled with e

1

e

2

: : : e

c

. We use a binary tree as an auxiliary structure. The

tree is built during the construction of the automaton. Each inner node of the tree

has two lists (for 0 and for 1), which contents states, where ends the path labeled

with the same symbols as the path in the tree, starting at any �nal state and is the

longest possible. So, if a state s is in the list l

e

in the node with the path p

1

p

2

: : : p

q

from the root, there exists a path in the DASG from any �nal state to state s, which

is labeled p

1

p

2

: : : p

q

and state s has no output transition labeled e. We start with

an automaton with the only state 0. States (tc) for t = 0; 1; : : : ; n are �nal. At the

beginning, the tree has only the initial node.

1: l

"

0

 f0g, l

"

1

 f0g

2: for k 0 to (n� 1) do

3: encode the symbol t

(k+1)

as e

1

e

2

: : : e

c

4: set the root as the actual node in the tree

5: for b 1 to c do

6: add state (ck + b)

7: for each state s in the list l

e

b

in the actual node of the tree do

8: add a transition labeled e

b

between states s and (ck + b)

9: remove s from the list l

e

b

10: end for

11: go to the child of the actual node of the tree through the transition

labeled e

b

and set the child as the actual node (if the child does not

exist, create it and set both lists of new node empty)

12: if b < c then

13: add the state (ck + b) to the both lists in the actual node

14: end if

15: end for

16: mark the state (ck + c) as a �nal state and add it to the both lists in

the root of the tree

17: end for

Figure 6: Algorithm 2 (incremental construction of encoded DASG)

The algorithm is demonstrated in Fig. 7{11. The lists maintained in the node

with the path p from the root are denoted as l

p

0

and l

p

1

, the symbols are coded this

way: a = 00, b = 01, c = 10.

0

l

"

0

= f0g, l

"

1

= f0g

Figure 7: Encoded DASG for the string T = ".

111

Proceedings of the Prague Stringology Club Workshop '98

0

0

1

0

2

0

0

l

"

0

= f2g, l

"

1

= f0; 2g

l

0

0

= fg, l

0

1

= f1g

Figure 8: Encoded DASG for the string T = a.

0

0

1

0

1

2

0

3

1

4

0

0

1

l

"

0

= f4g, l

"

1

= f0; 2; 4g

l

0

0

= f3g, l

0

1

= fg

Figure 9: Encoded DASG for the string T = ab.

4.1 Number of transitions

The number of states grows to 1 + nc = 1 + ndlog

2

ne. The maximum number of

transitions is c(2n�

1

2

(c+ 1)) = dlog

2

ze(2n �

1

2

(dlog

2

ze+ 1)).

4.2 Complexity

The main cycle (line 2{15) is performed n times. Lines 1,3,4,6,11,12,13 and 16 require

constant time. The cycle on line 5 is performed O(log

2

z) times. The total number

of transitions is O(n log

2

z). Therefore, the total time complexity of lines 7{10 is

O(n log

2

z). Hence, the total time complexity is O(n log

2

z).

The algorithm needs O(z + n log

2

z) extra space for the tree and for the lists in

its nodes. The subsequence test requires O(m log

2

z) time in the worst case.

0

0

5

1

61

0

1

2

0

3

1

4

0

0

0

1

l

"

0

= f6g, l

"

1

= f0; 2; 4; 6g

l

0

0

= f3; 5g, l

0

1

= fg

Figure 10: Encoded DASG for the string T = abb.

112

Directed Acyclic Subsequence Graph

0

0

1

5

1

6

1

7

0

81

0

1

2

0

1

3

1

4

0

1

0

1

0

1

0

l

"

0

= f6; 8g, l

"

1

= f8g

l

0

0

= f3; 5g, l

0

1

= fg

l

1

0

= fg, l

1

1

= f7g

Figure 11: Encoded DASG for the string T = abbc.

5 DASG for a set of strings

Let us suppose an alphabet � and strings T

1

; T

2

; : : : ; T

w

over this alphabet. We extend

Algorithm 1 to a set strings fT

1

; T

2

; : : : ; T

w

g. Let L =

P

w

i=1

length(T

i

).

The construction of DASG has two steps:

� Construction of inverted trie for reversed strings.

� Construction of an automaton.

Construction of inverted trie: Inverted trie arises from trie by reversing the

transitions and can be constructed during the construction of trie (each node of trie

will have one inverted transition). Final nodes of trie are initial nodes of inverted

trie. Inverted trie is used as an auxiliary structure and served for �nding common

su�xes of the strings.

Construction of an automaton: For each string T

i

; 1 � i � w we will maintain:

� lists l

i

a

; a 2 � of states, which have no output transition for the symbol a

� actual position act

i

in inverted trie

� actual position last

i

in the automaton

In each node of inverted trie we save the number of corresponding state in the au-

tomaton. Let v denotes this number, let
 denotes the transition function in trie,

and let � denotes the transition function in the automaton. For each transition of the

automaton we have to remember, which strings it belongs to. This set is denoted E.

We start with the automaton with the only state 0. Each state of the automaton is

�nal. Set is ordered set with two de�ned operation: first return the �rst string in

the set and next return the successor of the string. The total number of states after

each step is in the variable states.

The algorithm is demonstrated in Fig. 15{18.

113

Proceedings of the Prague Stringology Club Workshop '98

1: for i 1 to w do

2: for each a 2 � do

3: l

i

a

 f0g

4: end for

5: act

i

 �nal state for the string T

i

in trie

6: last

i

 0

7: end for

8: for each node i in trie do

9: v(i) 0

10: end for

11: Set fT

1

; T

2

; : : : ; T

w

g

12: states 1

13: c 1

14: p 1

15: for k 1 to L do

16: M ;

17: symbol p-th symbol of T

c

18: act

c

(act

c

; symbol)

19: if �(last

c

; symbol) 6= ; then

20: new state �(last

c

; symbol)

21: else if v(act

c

) > 0 then

22: new state v(act

c

)

23: else

24: add state states

25: new state states

26: v(act

c

) states

27: states states+ 1

28: end if

29: last

c

 new state

30: for each s 2 l

c

symbol

do

31: if �(s; symbol) 6= ; then

32: M M [f�(s; symbol)g

33: E(s; symbol) E(s; symbol) [fcg

34: else

35: �(s; symbol) new state

36: E(s; symbol) fcg

37: end if

38: end for

39: l

c

symbol

 ;

40: M M [fnew stateg

41: for each a 2 A do

42: l

c

a

 l

c

a

[M

43: end for

44: if p = length(T

c

) then

45: Set Set n fT

c

g

46: end if

47: if next(Set; c) is de�ned then

48: d is de�ned as follows: next(Set; c) = T

d

49: else

50: d is de�ned as follows: first(Set; c) = T

d

51: p p+ 1

52: end if

53: c d

54: end for

Figure 12: Algorithm 3 (extension of DASG for a set of strings fT

1

; T

2

; : : : ; T

w

g)

114

Directed Acyclic Subsequence Graph

a

a

b

a

b

Figure 13: Trie for the reversed strings aaa and bba.

a

b

a

b

a

Figure 14: Inverted trie for the reversed strings aaa and bba.

0

l

1

a

= f0g, l

1

b

= f0g

l

2

a

= f0g, l

2

b

= f0g

Figure 15: Extension of DASG for the Set = f"g.

0

a

b

1

2

l

1

a

= f1g, l

1

b

= f0; 1g

l

2

a

= f0; 2g, l

2

b

= f2g

E(0; a) = f1g, E(0; b) = f2g

Figure 16: Extension of DASG for the Set = fa; bg.

0

a

b

1

a

2

b

3

l

1

a

= f3g, l

1

b

= f0; 1; 3g

l

2

a

= f0; 2; 3g, l

2

b

= f3g

E(0; a) = f1g, E(0; b) = f2g

E(1; a) = f1g, E(2; b) = f2g

Figure 17: Extension of DASG for the Set = faa; bbg.

115

Proceedings of the Prague Stringology Club Workshop '98

0

a

b

1

a

2

b

a

3

a

4

l

1

a

= f4g, l

1

b

= f0; 1; 3; 4g

l

2

a

= f1; 4g, l

2

b

= f1; 3; 4g

E(0; a) = f1g, E(0; b) = f2g

E(1; a) = f1g, E(2; b) = f2g

E(3; a) = f1g, E(2; a) = f2g

Figure 18: Extension of DASG for the Set = faaa; bbag.

5.1 Number of states

For each symbol of the string, except for the last, a new state can be added. Hence, the

DASG constructed in Algorithm 3 has at most 1+

P

w

i=1

(length(T

i

)�1)+1 = 2+L�w

states. DASG has this number of states if no two strings have any common nonempty

pre�x and su�x.

Each state can have at most z output transitions. Therefore, the total number of

transitions is O(Lz).

5.2 Complexity

Construction of inverted trie requires O(L) time and O(L) extra space. For the

time analysis of the Algorithm 3 is important the time complexity of set operations.

We use four of them: insert a member, delete a member, assign a value and union.

Suppose, that we use a balanced tree for the representation of the set M (another

possibilities are a member function or a list). Then, the operations assign and union

require O(jM j) time and the other operations require O(log jM j) time.

Lines 1{7 requireO(wz) time, lines 8{10 requireO(L) time, line 11 requires O(w)

time. The main cycle (lines 15{53) is performed L times. Line 16 requires O(L) time,

and lines 18{20 require O(log z) time. The cycle on the lines 30{38 is performed at

most L times. Its time complexity is O(L log L) (line 32 requires O(logL) time).

Line 40 requiresO(log L) time, lines 41{43 require O(Lz) time. Hence, the total time

complexity is O(L

2

+ L

2

logL+ L log L+ L

2

z) � O(L

2

logL) for arbitrary alphabet.

We need O(L) space for trie, O(L) space for the set M , and O(Lwz) space for

the lists l

c

a

. Hence, the total required extra space is O(Lwz).

5.3 Application: the longest common subsequence problem

The longest common subsequence (LCS) problem is known problem with applications

in many areas. There are e�cient algorithms that solve the LCS problem for two

strings, for example [4].

Let us de�ne the following problem (as in [2]): What is the longest common

subsequence between any k � w strings in a set S of w strings?

To solve this problem, we construct DASG for the set S and append to each

transition �(q; a) the number of strings in the set E (denoted as num(q; a)) and to

116

Directed Acyclic Subsequence Graph

each state q the number of its input edges (denoted as c

q

) and the number of its

input edges with num(q; a) greater or equal k (denoted as ck

q

). We do not need the

set E in this case. Then, we traverse DASG. During the traversing we use LIFO

(Last-In-First-Out) memory as an auxiliary structure (denoted as Stack). Dot (.)

denotes concatenation. The longest sequence of input symbols from the initial state

to the state q is stored in cs

q

.

1: lcs "

2: for each state q do

3: cs

q

 "

4: end for

5: Stack 0

6: while Stack is not empty do

7: q Pop

8: if length(cs

q

) > length(lcs) then

9: lcs cs

q

10: end if

11: for each a 2 � such that �(q; a) 6= ; do

12: r �(q; a)

13: c

r

 c

r

� 1

14: if c

r

= 0 then

15: Push(r)

16: end if

17: if num(q; a) � k then

18: ck

r

 ck

r

� 1

19: if ck

r

= 0 then

20: cs

r

 cs

q

:a

21: end if

22: end if

23: end for

24: end while

Figure 19: Algorithm 4 (the longest common subsequence)

The traversion of DASG requires O(Lz) time. For common subsequences cs

q

we

need O(Ly) space, where y = maxflength(T

i

)g. Hence, the general longest com-

mon subsequence problem of w strings requires O(L

2

logL + Lz) time for arbitrary

alphabet. It is a better solution than presented in [2].

6 Conclusion

In section 3, we introduced a left-to-right algorithm for construction of DASG. It re-

quiresO(nz log z) time and O(z) extra space for arbitrary alphabet. The subsequence

test takes O(m log z) time.

In section 4, we showed the modi�cation of that algorithm for encoded DASG.

The modi�ed algorithm requires O(n log z) time and O(z+ n log z) extra space. The

subsequence test takes O(m log z) time.

In section 5, we extended DASG for a set of strings and used it to solve the general

longest common subsequence problem. Construction of DASG takes O(L

2

logL) time

and O(Lwz) extra space. The traversion of DASG requires O(Lz) time. Hence, the

117

Proceedings of the Prague Stringology Club Workshop '98

solution of the general longest common subsequence problem requires O(L

2

logL)

total time and O(Lwz + Ly) space, where y = maxflength(T

i

)g.

References

[1] Baeza-Yates, R. A.: The Subsequence Graph of a Text. TAPSOFT'89, Pro-

ceedings of the International Joint Conference on Theory and Practice of Sot-

ware Development, Volume 1: Advanced Seminar on Foundations of Innovative

Software Development I and Colloquium on Trees in Algebra and Programming

(CAAP'89), Lecture Notes in Computer Science 351, Barcelona, Spain, March

1989, pages 104{118.

[2] Baeza-Yates, R. A.: Searching subsequences. Theoretical Computer Science 78

(1991), pages 363{378.

[3] Crochemore, M., Rytter, W.: Text algorithms. Oxford University Press, 1994.

[4] Hunt, J., Szymanski, T.: A fast algorithm for computing longest common subse-

quences. Communication of ACM 20, 1977, pages 350{353.

[5] Hirschberg, D. S.: A linear space algorithm for computing maximal common

subsequences. Communication of ACM, 18(6), 1975, pages 341{343.

118

