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Abstract. We present a new simulation method for the reduced nondetermin-

istic �nite automata (NFAs) for the approximate string and sequence matching

using the Levenshtein and generalized Levenshtein distances. These reduced

NFAs are used in case that we are interested only in all occurrences of a pattern

in an input text such that the edit distance between the pattern and the found

strings is less or equal to a given k and we are not interested in the values of

these edit distances. The presented simulation method is based on the dynamic

programming.
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1 Introduction

Given a string T = t

1

t

2

: : : t

n

over an alphabet �, a pattern P = p

1

p

2

: : : p

m

over

the alphabet �, and an integer k, k � m � n. The approximate string matching is

de�ned as a searching for all occurrences of pattern P in text T such that edit distance

D(P;X) between pattern P and string X = t

i

t

i+1

: : : t

j

, 0 < i � j � n, found in the

text is less than or equal to k. The approximate sequence matching is de�ned in the

same way as the approximate string matching, but any number of symbols can be

located between the occurrences of two adjacent symbols of the pattern in the text.

In this paper we consider two types of distances called the Levenshtein distance and

the generalized Levenshtein distance.

The Levenshtein distance D

L

(P;X) between strings P and X not necessarily of

the same length is the minimum number of edit operations replace (one character

is replaced by another), insert (one character is inserted), and delete (one character

is removed) needed to convert string P to string X. The generalized Levenshtein

distance D

G

(P;X) between strings P and X not necessarily of the same length is

the minimum number of edit operations replace, insert , delete, and transpose (two

adjacent characters are exchanged) needed to convert string P to string X.
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Figure 1: NFA for the approximate string matching using the Levenshtein distance

(m = 4, k = 2).

The nondeterministic �nite automaton (NFA) for the approximate string matching

using the Levenshtein distance has been presented in [Mel96, Hol96]. In the NFA there

is for each edit distance l, 0 � l � k, one level of states. An example of such NFA for

m = 4 and k = 2 is shown in Figure 1

2

.

There are known two algorithms for the approximate string matching for which

there was shown [Mel96, Hol97] that they simulate the run of the NFA for the ap-

proximate string matching. The �rst method is Shift-Or algorithm [BYG92] and its

variations | Shift-Add [BYG92] and Shift-And [WM92]. The second method is the

dynamic programming [Sel80, Ukk85].

2 Reduced NFAs

If we are interested only in all occurrences of the pattern in the text with the edit

distance less or equal to k, and we do not want to know the edit distance between

the found string and the pattern, we can remove such states from the NFA for the

approximate string matching that are needed only to determine the edit distance of

the found string [Hol96]. Such states are bordered by the dotted line in Figure 1.

The resulting NFA is shown in Figure 2 and has only one �nal state that represents

that the pattern has been found with the edit distance less or equal to k.

2

Symbol p

j

, 0 < j � m, represents �� fp

j

g in �gures.
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Figure 2: Reduced NFA for the approximate string matching using the Levenshtein

distance (m = 4, k = 2).

The modi�cation of Shift-Or algorithm for the reduced NFAs was presented in

[Hol96] and the modi�cation of the dynamic programming is discussed in the following

sections.

3 Dynamic Programming

The dynamic programming [Sel80, Ukk85] computes in each step i of the run of the

NFA ith column of matrix D which is of size (m� n); one element of the column is

for each depth of the NFA and contains the number of level of the highest active state

of this depth. If there is no active state in this depth, then the element contains the

number of the level not existing in this depth. Since each NFA for the approximate

string matching has m+ 1 depths, it needs space O(m) and runs in time O(mn).

Since last k depths of the NFA do not have states on all k + 1 levels of the NFA,

this method is not suitable for the reduced NFAs for the approximate string matching.

Instead of having one element of the column for each depth of the NFA we have one

element for each diagonal of the NFA; these diagonals are formed by the "-transitions

and are of the same length. If any state on a diagonal is active, then all states

located lower on this diagonal are also active because of "-transitions. Therefore in

the element for each diagonal l, 0 � l � m� k, we store only the number of the level

of the highest active state on diagonal l. In this way we get for each step i, 0 � i � n,

of the run of the NFA the column D

i

= d

0;i

; d

1;i

; : : : ; d

m�k;i

of length m� k+1. Each

element of the column can contain a value ranging from 0 to k+1, where value k+1
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represents that there is no active state on the corresponding diagonal. The formula

for computing columns D

i

is as follows:

d

0;i

:= 0; 0 � i � n

d

j;0

:= k + 1; 0 < j � m� k

d

j;i

:= min(k + 1;

g

d

j�1;i�1

+j;t

i

+ d

j�1;i�1

; delete & match

if p

d

j;i�1

+j+1

6= t

i

then d

j;i�1

+ 1 replace

else k + 1;

if p

d

j+1;i�1

+j+2

6= t

i

then d

j+1;i�1

+ 1 insert

else k + 1); 0 < j < m� k; 0 < i � n

d

j;i

:= min(k + 1;

g

d

j�1;i�1

+j;t

i

+ d

j�1;i�1

; delete & match

if p

d

j;i�1

+j+1

6= t

i

then d

j;i�1

+ 1 replace

else k + 1); j = m� k; 0 < i � n

(3)

The �rst line in the formula says that the initial state lying on the 0th diagonal

of the NFA is always active because of its self-loop.

The second one says that at the beginning of the searching there is no active state

on diagonals l, 0 < l � m� k, because there is no initial state on such diagonals.

Part g

d

j�1;i�1

+j;t

i

+ d

j�1;i�1

represents match and delete transitions. The match

is represented by the horizontal transitions and edit operation delete is represented

by the diagonal "-transitions in Figure 2. An implementation of match transition is

simple | if the state on diagonal j � 1 and on level d

j�1;i�1

is active and horizontal

transition leading from this state is labeled by symbol t

i

, then the state on diagonal j

and on level d

j�1;i�1

becomes active. For an implementation of delete transition we

have to search for the state on diagonal j�1 and on level l, d

j�1;i�1

� l � m�k, such

that there is a match transition labeled by input symbol t

i

leading from this state.

In order to �nd such state in the constant time we have to use auxiliary matrix G in

which there is for each position r in pattern P and input symbol t

i

the number r

0

,

0 � r

0

, such that p

r+r

0

= t

i

where r

0

is the lowest possible. If there is no such position,

then r

0

= k+1. Since the value of d

j�1;i�1

can be k+1 and the maximum number of

diagonal, into which there lead match transitions, is m�k, the maximumposition for

which a value of matrix G is required is m� k+ k+1 = m+1. Therefore the matrix

has to be of size (m+ 2)� j�

0

j where �

0

� � is the alphabet used in pattern P . The

formula for computation of matrix G is as follows:

g

j;a

:= min(fk + 1g [ f(l j p

j+l

= a; 0 � l) or

(k + 1 j if there is no such l)g); 0 < j � m;a 2 �

g

m+1;a

:= k + 1; a 2 �

(4)

Number d

j�1;i�1

+ j gives the position of symbol p

d

j�1;i�1

+j

in the pattern which

is used as a label of the match transition leading from the highest active state on
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diagonal j�1 to a state on diagonal j. Therefore g

d

j�1;i�1

+j;t

i

+d

j�1;i�1

gives the level

of the highest active state on diagonal j that has arisen by using match transition to

each active state on diagonal j � 1.

Part d

j;i�1

+ 1 represents replace transition. In Figure 2, edit operation replace

is represented by the diagonal transition labeled by symbol p

d

j;i�1

+j+1

mismatching

symbol p

d

j;i�1

+j+1

. To implement replace transition it is only needed to move the

highest active state on diagonal j to the next lower position on the same diagonal.

Since d

j;i�1

can reach k + 1 the value of expression d

j;i�1

+ j + 1 can be greater than

m and in that case p

d

j;i�1

+j+1

would give unde�ned value. To solve this problem we

can add some if statements but it increases the time of the computation. The better

solution is to put some symbols, that are not in input alphabet �, at positions m+1

and m+ 2 of the pattern | for example symbol hend of stringi.

Part d

j+1;i�1

+1 represents insert transition. In Figure 2, edit operation insert is

represented by the vertical transition also labeled bymismatching symbol p

d

j+1;i�1

+j+2

.

The active state on diagonal j + 1 and on level d

j+1;i�1

moves to level d

j+1;i�1

+ 1 on

diagonal j.

From these transitions we get minimum in order to obtain the highest active state

on each diagonal. An example of matrixG for pattern P = adbbca is shown in Table 1

and the process of searching for pattern P = adbbca with at most k = 3 errors in text

T = adcabcaabadbbca is shown in Table 2.

G a b c d � � fa; b; c; dg

1 0 2 4 1 4

2 4 1 3 0 4

3 3 0 2 4 4

4 2 0 1 4 4

5 1 4 0 4 4

6 0 4 4 4 4

7 4 4 4 4 4

Table 1: Matrix G for pattern P = adbbca and k = 3.

D - a d c a b c a a b a d b b c a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 4 0 1 1 0 1 2 0 0 1 0 1 2 2 3 0

2 4 4 0 1 2 1 2 3 4 1 2 0 1 2 3 4

3 4 4 4 2 3 4 2 3 3 4 3 4 0 1 2 3

Table 2: Matrix D for pattern P = adbbca, text T = adcabcaabadbbca, and k = 3.

Below we also present an algorithm that uses the dynamic programming for the

reduced NFA for the approximate string matching using the Levenshtein distance.

While in Formula 3 there were evaluated the transitions incoming to the diagonals,
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in this algorithm there are evaluated the outgoing transitions. It simpli�es the com-

putation because then there is only one test whether input symbol t

i

is a matching

symbol. This test is necessary for deciding whether to use only match transition or

to use replace, insert , and delete transitions.

Algorithm 1

DP for the reduced NFA for the approximate string matching using the Levenshtein

distance

Input: Pattern P = p

1

p

2

: : : p

m

, text T = t

1

t

2

: : : t

n

, maximum number of di�erences

allowed k.

Output: Matrix D of size (m� k + 1)� (n+ 1).

Method:

d

0;0

:= 0

d

j;0

:= k + 1; 0 < j � m� k

for i := 1; 2; : : : ; n do

d

0;i

:= 0 /� j = 0 �/

d

1;i

:= g

1;t

i

/� delete & match from the initial state ��� �/

if p

d

1;i�1

+2

= t

i

then /� j = 1 �/

d

2;i

:= d

1;i�1

/� match �/

else

d

2;i

:=min(g

d

1;i�1

+2;t

i

+ d

1;i�1

; k + 1) /� delete & match �/

d

1;i

:=min(d

1;i�1

+ 1; d

1;i

) /� replace �/

endif /� ��� �/

for j := 2; 3; : : : ;m� k � 1 do

if p

d

j;i�1

+j+1

= t

i

then

d

j+1;i

:= d

j;i�1

/� match �/

else

d

j+1;i

:=min(g

d

j;i�1

+j+1;t

i

+ d

j;i�1

; k + 1) /� delete & match �/

d

j;i

:=min(d

j;i�1

+ 1; d

j;i

) /� replace �/

d

j�1;i

:=min(d

j;i�1

+ 1; d

j�1;i

) /� insert �/

endif /� ��� �/

endfor

j := m� k /� the last diagonal �/

if p

d

j;i�1

+j+1

6= t

i

then

d

j;i

:=min(d

j;i�1

+ 1; d

j;i

) /� replace �/

d

j�1;i

:=min(d

j;i�1

+ 1; d

j�1;i

) /� insert �/

endif

if d

m�k;i

< k + 1 then

write(\pattern found at position i")

endif

endfor

The �rst command in the �rst for cycle in the algorithm (d

0;0

:= 0) represents

the self-loop of the initial state | the highest active state in 0th diagonal is always

in level 0 and this is the initial state.

The second command (d

1;i

:= g

1;t

i

) represents the only transition that leads from

0th diagonal which is match transition. g

1;t

i

gives the position l of the pattern, on

which t

i

is located, or k+1 if t

i

is not in the pattern. If l < k+1, then this position l
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is equal to the level of 1st diagonal in which there is the active state that arose by

using match transition for t

i

going from 0th diagonal.

The �rst if statement represents transitions leading from the highest active state

on the 1st diagonal. In this case we do not evaluate insert transitions because they

lead always to 0th diagonal where the initial state is always active. If input symbol

t

i

is the same as the symbol p

d

1;i�1

+2

used as a label of match transition leading from

the highest active state in 1st diagonal, then we evaluate only this match transition

(d

2;i

:= d

1;i�1

). If the symbols are di�erent, then we evaluate delete and replace

transitions. For delete transition we search for the next occurrence of input symbol

t

i

in the pattern behind position d

j;i�1

+ j + 1 (the number of the diagonal plus the

number of the level gives the position in the pattern corresponding to the state on

that level of that diagonal). At �rst we perform delete transition (we move the highest

active state down in the diagonal) and then we perform match transition for input

symbol t

i

. For replace transition we move the highest active state in the diagonal to

the next lower position in the diagonal.

In the next for cycle the transitions leading from the highest active state of the

next diagonals except the last one are evaluated. It is done in the same way as

described in the previous paragraph but in addition insert transition is evaluated.

For this insert transition we put the level of diagonal j increased by one to the

previous diagonal j � 1.

In the last diagonal we evaluate only replace and insert transitions because match

transition has no diagonal into which it could lead.

121110

98

765

0

43

2

p
4

p
4

p
3

p
3

p
3

p
3

p
2

p
2

Σ

p
2

p
1

p
1

p
2

p
2

p
3

p
3

p
4

ε ε

ε ε ε

ε

p
2

p
3

p
3

p
4

p
1

p
2

p
2

p
3

1

Figure 3: Reduced NFA for the approximate string matching using the generalized

Levenshtein distance (m = 4, k = 2).

This method can be also used for the simulation of the run of the reduced NFA
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for the approximate string matching using the generalized Levenshtein distance. An

example of such reduced NFA for m = 4 and k = 2 is shown in Figure 3. We have

only to add the part representing edit operation transpose. In Formula (3), the added

part is as follows:

if p

d

j�1;i�2

+j+1

= t

i�1

and p

d

j�1;i�2

+j

= t

i

then d

j�1;i�2

+ 1 transpose

else k + 1; 0 < j � m� k; 1 < i � n

(5)

And in Algorithm 1, the added part is as follows:

if p

d

j;i�2

+j+2

= t

i�1

and p

d

j;i�2

+j+1

= t

i

then

d

j+1;i

:=min(d

j;i�2

+ 1; d

j+1;i

) /� transpose �/

endif

This part should be inserted into each part of Algorithm 1 where 0 � j < m� k and

1 < i � n. Such places are behind the lines marked by `���'.
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Figure 4: Reduced NFA for the approximate sequence matching using the Levenshtein

distance (m = 4, k = 2).

This type of simulation of the reduced NFAs can be also used for the reduced

NFAs for the approximate sequence matching using the Levenshtein and generalized

Levenshtein distances [Hol97]. An example of the reduced NFA for the approximate
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sequence matching using the Levenshtein distance for m = 4 and k = 2 is shown in

Figure 4.

To modify the presented algorithm so that it could simulate this reduced NFA

we have to implement the self-loops in each non�nal and noninitial state. It can

be performed by inserting the following part into Formulae (3) and (3+5) for the

approximate string matching.

if p

d

j;i�1

+j+1

6= t

i

then d

j;i�1

self �loop

else k + 1; 0 < j < m� k; 0 < i � n

if p

d

j;i�1

+j+1

6= t

i

and d

j;i�1

< k

then d

j;i�1

self �loop

else k + 1; j = m� k; 0 < i � n

(6)

The presented formulae and algorithm compute whole matrixD but in the practice

only two (three for the generalized Levenshtein distance) columns from this matrix

are used in each step of the computation.

4 Conclusion

The resulting simulation runs in time O((m � k)n + m�) and needs space O(m�),

where � is the number of di�erent symbols used in the pattern. We can decrease

the space complexity by using another implementation of auxiliary matrix G but it

increases the time complexity. Our algorithm also uses only one input symbol in each

step of computation in case of the Levenshtein distance and two input symbols in

case of the generalized Levenshtein distance.

The resulting algorithm has the time bound better than [Sel80, Ukk85] which

runs in time O(mn) and for k >

m

2

it has also the time bound better (not considering

the preprocessing time) than [GP89] which runs in time O(kn + m log ~m) where

~m = min(m; j�j).
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